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Abstract

In analyses of engineering systems, fundamental quest remains the distribution of certain entities (matter, energy)

into the space. Thus certain definite forms are generated to serve a specific purpose. Bejan�s constructal theory specif-

ically deals with such optimal geometrical constructions. In this present article, equipartition theory is revisited from

macroscopic standpoint. It is noted that equipartition principle is a corollary of a more generalized formulation—

the constructal theory. It is seen that equipartition principle leads to certain power laws with which certain entities

are distributed. This constitutes a deterministic law of nature in some finite length and time scale. Thus equipartition

principle is to be recognized as an authentic basis of design for most efficient systems, which in turn obeys constructal

principle of organization in nature.

� 2005 Elsevier Ltd. All rights reserved.
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1. Constructal theory of organization

Recent advancement in thermodynamic optimization

is presented here with reference to the generation of

optimal geometric forms (topology) in flow systems.

The flow configuration has flexibility to alter its shape

and structure. The motive that governs the generation

of geometric form is in the fulfillment of minimum flow

resistance criterion. The imposed constraint is global

finiteness: volumetric flow rate, weight of the fluid and

time rate of flow. The emerging structures obtained in

this manner are termed constructal designs. The same

objective and constraints resulting in the similar struc-

ture that accommodates optimally shaped flow paths

occurring in nature and artificial systems are named con-
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structal law [1–7]. It is the single theory encompassing

the observations covered in animate and inanimate sys-

tems. The law can be stated as follows [1]:

‘‘For a finite-size system to persist in time (to live), it

must evolve in such a way that it provides easier access

to the imposed currents that flows through it’’.

It has long been observed that many of the volume-

to-point and point-to-volume flows occurring in nature

are in the form of tree networks [8–10]. The urge for for-

mulating physics based theory for the generating mech-

anism, from which fractal-like (not actually fractal but

purely Euclidean) structure [1,11] could be predicted,

was first met by the constructal theory of volume-to-

point flows [2–7].

This theory gave birth out of engineering optimiza-

tion of paths of minimum thermal resistance for cooling

finite-size small-scale electronic components [2]. The

problem was to cool a finite-size volume by pure con-

duction. The statement of this fundamental problem is:
ed.
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Nomenclature

A area

F force

g gravitational acceleration

H total length of fluid stream

h elemental length of fluid stream

I area moment of inertia

n index of power law

p pressure

Q volume of fluid stream

R universal gas constant

T temperature

V velocity of fluid stream

v specific volume of the fluid

w width of the finite fluid stream

Greek symbols

a inclination of a fluid element with the hori-

zontal

c specific weight of fluid element

d elemental length

h included angle between two non-parallel

sides of a fluid element

q density of fluid element

D infinitesimal potential difference

Subscripts

C centroid

i number of segments considered in a contin-

uous fluid stream

n integer number of partition considered in a

finite length of fluid element

P reference pole

x flow direction

Superscript

– location of hydrostatic force
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Consider a finite-size volume in which heat is being gen-

erated at every point and which is cooled through a

small patch (heat sink) located on its boundary. A finite

amount of high conductivity material is available. Deter-

mine the optimal distribution of such high conductivity

material through the given volume such the highest tem-

perature is minimized [12]. The predicted structure re-

veals a manifestation of the principle of equipartition:

the temperature drop through the high conductivity in-

sert is equal to the temperature drop through low con-

ductivity matrix [13]. The second important feature of

this optimum can be recorded from the expression of

minimized maximum temperature difference DT, which
scales with the square of orthogonal dimension H of

the heat conducting volume to the direction of applied

heat current [13] i.e.,

DT � H 2: ð1Þ

Thus, a power law correlates temperature drop and lat-

eral dimension of the cooled volume. The message is to

manufacture smallest possible elemental system.

In another realistic access optimization problem we

arrive in a situation of point-to-volume flow. The state-

ment of this fundamental problem is as follows: Con-

sider a fluid network to bathe a finite-size volume. The

function of the path network is to distribute a stream

of fluid to every elemental volume of the space. The

mass flow rate of the fluid is purely due to pressure gra-

dient (Hagen–Poiseuille) of the flow. The pressure differ-

ential varies with the position of the elemental volume

relative to the point source. The maximum pressure dif-

ference, which is demanded by the elemental volumes

that are situated furthest from the source, is of specific
importance. The total mass flow rate is fixed. The ther-

modynamic optimization of this fluid network is equiv-

alent to minimizing the maximum pressure difference

[14]. Optimized result yields that minimized maximum

pressure drop DP scales with the square of the orthogo-

nal dimension of the bathed volume to the direction of

applied fluid flow [15] i.e.,

DP � H 2: ð2Þ

The lesson of this power law correlation is to construct

narrowest possible elemental system. If the bifurcation

of each path is assumed, each path width shrinks by a

factor 1
2
from one stage to the next smaller stage [14].

Once again principle of equipartition is the crucial

underlying feature.

The objective of this present article is to discuss

point-to-point (we termed as elemental Fermat type)

flow and volume-to-volume (we named as integral

Fermat type) flow situations with reference to a fluid sys-

tem. The results can be extended to a heat transporting

system. The analogy and similarity between heat current

and fluid stream is theoretically well established [16].

Here results obtained are supplementary to the views ex-

pressed in the Ref. [17]. The contrast between Fermat

principle and constructal law has been enunciated with

clarity by Bejan [18].
2. Elemental Fermat type flow

For a large number of classes of naturally organized

(self-organized) systems it is important to establish the

effect of gravitation on the thermodynamic properties
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of the systems. First, it is instructive to establish the dis-

tribution of pressure p and specific volume v along the

height h of a stack of fluid column. Then, we must use

an empirical equation of state for the given substance

in the functional form v = v(p) else we must use the

method of successive approximations for which we need

either experimental data or values calculated via the

equation of state both relating to the p versus v depen-

dence along the specific isotherm for the substance

studied.

From the basic hydrostatic law it is known that in a

column of fluid the pressure varies with height. The

change in pressure along the elementary column of

height dh is

dp ¼ � c
A
dV ; ð3Þ

where c is the specific weight of the fluid in the column,

dV is the elementary volume and A is the cross-sectional

area of the elementary column. Since dV = Adh, Eq. (3)

reduces to

dp ¼ �cdh: ð4Þ

By definition, c ¼ g
v, where g is the gravitational acceler-

ation. Thus, we arrive at the following equation

dp ¼ � g
v
dh; ð5Þ

where the minus sign shows that with the increasing

height (dh > 0) the fluid pressure decreases (dp < 0).

With the choice of reference frame at the top of the free

surface instead of the bottom, this sign convention is

reversed.

If the pressure p and temperature T of the gas are

such that the fluid can be regarded as ideal, the equation

of state translates into

v ¼ RT
p

; ð6Þ

where R is the universal gas constant. In view of Eq. (6),

we can rewrite Eq. (5) as

dp ¼ � p
RT

dh; ð7Þ

whence

dp
p

¼ � dh
RT

: ð8Þ

Integrating this equation with respect to a reference

pressure p1 at a reference height h1 we obtain

ln
pðhÞ
p1

¼ � 1

R

Z h

h1

dh
T

: ð9Þ

For isothermal fluid column we have

ln
pðhÞ
p1

¼ � h� h1
RT

: ð10Þ
Thus, we obtain the following formula for the distribu-

tion of pressure in an ideal gas isothermal column,

known as barometric height formula

pðhÞ ¼ p1 exp � h� h1
RT

� �
: ð11Þ

Invoking the ideal gas law, Eq. (6) into Eq. (11) we

find that

vðhÞ ¼ v1 exp
h� h1
RT

� �
: ð12Þ

Hence, we see from the last but one relationship, Eq.

(11), dependence of pressure on height of the fluid col-

umn is of exponential nature. For small argument of

the exponent, the relationship is almost linear.

In view of constructal theory in a self-organized sys-

tem, certain entities are equipartitioned. For a point-to-

point flow configuration, distribution of pressure is of

concern. We are interested to learn how the height H

of an isothermal vertical fluid column can be divided

into n horizontal parts so that pressure is equal in each

subdivision.

Let, w be the width of the fluid column. Suppose,

below the top of the fluid column, h1 and h2 be the

depths of the two horizontal lines, which divide the col-

umn into three portions. Say p1, p2 and p3 be the three

pressures respectively from the surface of fluid on the

three portions of the column. The expressions for pres-

sure can be written as follows

p1 ¼
1

2
cwh21; ð13Þ

p2 ¼
1

2
cwðh22 � h21Þ ð14Þ

and

p3 ¼
1

2
cwðH 2 � h22Þ: ð15Þ

Now, we impose the condition

p1 ¼ p2 ¼ p3: ð16Þ

Eliminating the pressure terms from Eqs. (13) and

(14) we have

h1 ¼
1

2

� �1=2

h2: ð17Þ

Again, eliminating the pressure terms between Eqs.

(14) and (15) we arrive at

h2 ¼
1

2

� �1=2

ðh21 þ H 2Þ1=2: ð18Þ

Solving Eqs. (17) and (18) for h1 and h2 in terms of H

we obtain

h1 ¼
1

3

� �1=2

H ð19Þ
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and

h2 ¼
2

3

� �1=2

H : ð20Þ

On following the method of induction, in general, we

can write

hi ¼
i
n

� �1=2

H ð21Þ

for i = 1,2,3, . . . ,n.
The center of pressure can be determined to find the

coordinate of a representative pressure differential, as

the role played by center of mass in solid mechanics in

place of a rigid body. Let, �h1, �h2 and �h3 be the depth

of center of pressures below the top surface of the fluid

column for the three portions of the column. The loca-

tion of hydrostatic force �hP with respect to some pole

P is related to the location of hydrostatic force �h with

reference to centroid C by the parallel-axis theorem

[19] as follows

�hP ¼ �hþ IC
Sin2a

A�h
; ð22Þ

where IC is the moment of inertia with respect to the cen-

troid and a is the inclination of the fluid column with the

horizontal. Here, in particular

a ¼ p
2
; IC ¼ 1

12
wh3; A ¼ wh and �h ¼ h

2
:

Thus for the first partition from the top we have

�h1 ¼
2

3
h1: ð23Þ

Substituting back the value from Eq. (19) to Eq. (23)

we arrive at

�h1 ¼
2

3

1

3

� �1=2

H : ð24Þ

Similarly, for the second partition from the top we

get

�h2 ¼
2

3

23=2 � 1

31=2

 !
H : ð25Þ

And for the third portion from the top we obtain

�h3 ¼
2

3

33=2 � 23=2

31=2

 !
H : ð26Þ

Thus, generalizing the result on following the method

of induction, we finally arrive at

�hi ¼
2

3

i3=2 � ði� 1Þ3=2

n1=2

 !
H ð27Þ

for i = 1,2,3, . . . ,n.
Contrary to the equipartition of the physical quantity

pressure, now we would like to consider equipartition of

space and then the distribution of pressure there in. Let,

the fluid column H be divided into n large number of

equal-sized slices, such that

h ¼ H
n
: ð28Þ

Suppose, the densities of these layers be q1, q2, q3, . . .
and qn respectively. These densities are practically con-

stant over these small slices. Obeying ideal gas equation

of state, their corresponding pressures are RTq1, RTq2,
RTq3, . . . and RTqn respectively. Since, the size of the

slices are small, the same pressure is valid at all points

of the slice. It means that center of pressure is of no spe-

cific importance here. Again, in infinitesimal sense, the

difference of pressures on the top and bottom faces of

a slice is equal to the weight of the fluid contained in

the layer. Hence, we can write in succession

RTq1 � RTq2 ¼ q1gh ð29aÞ
RTq2 � RTq3 ¼ q2gh ð29bÞ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

and

RTqn�1 � RTqn ¼ qn�1gh ð29cÞ

From Eq. (29a) we get

q2 ¼ q1 1� gh
RT

� �
: ð30aÞ

Similarly from Eq. (29b), using the result of Eq. (29a)

we obtain

q3 ¼ q2 1� gh
RT

� �
¼ q1 1� gh

RT

� �2

: ð30bÞ

Thus in general we can write

qn ¼ qn�1 1� gh
RT

� �
¼ q1 1� gh

RT

� �n�1

: ð30cÞ

Hence, as the altitude increases in arithmetic progres-

sion, the densities and the corresponding pressures de-

crease in geometric progression from the bottom of the

vertical fluid column. Now, if q be the density just above

the nth layer, from Eq. (30c) we have

q ¼ qn 1� gh
RT

� �
¼ q1 1� gh

RT

� �n

: ð30dÞ

Invoking Eq. (28) into Eq. (30d) and rewriting we

arrive at the expression below

q ¼ q1 1� 1

z

� ��z� � �gH
RTð Þ

; ð30eÞ

where

z ¼ nRT
gH

:
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For n! 1, H remains constant and z! 1. Recog-

nizing the limit

lim
z!1

1� 1

z

� ��z

¼ e; ð30fÞ

we finally have

q ¼ q1 exp � gH
RT

� �
: ð30gÞ

Following ideal gas law, the expression for pressure

takes on the following form

p ¼ p1 exp � gH
RT

� �
: ð30hÞ

As expected, this last equation is identically the same

as that of Eq. (11) obtained earlier. The message of the

foregoing analysis is that equipartition of one entity de-

mands the power law distribution of the other associated

with it.

Next, we may be interested to learn the range of

values of the index of the power law distribution of a

physical quantity for which the equipartition of other

quantity is valid. In the following example we con-

sider the gauge pressure distribution on the face of a ver-

tical rectangular sluice gate in a free surface flow. From

the experimental evidence, the gauge pressure distribu-

tion conforms to a mathematical relation of the form

[20]

p � patm ¼ qgh 1� h
H

� �n� �
; ð31Þ

where patm is the atmospheric pressure exerted on the

free surface of the flow, H is the depth of the gate and

n is some parametric constant. We are interested to esti-

mate the magnitude and location of the resulting hori-

zontal force on the gate.

Elemental pressure force dFx in the horizontal direc-

tion on an elemental strip of width w and height dh is

dF x ¼ ðp � patmÞwdh: ð32Þ

Using Eq. (31) into Eq. (32), we get

dF x ¼ qgw h� hnþ1

Hn

� �
dh: ð33Þ

Total horizontal force is obtained upon integrating

Eq. (33) as

F x ¼
1

2
qgwH 2 n

nþ 2

� �
: ð34Þ

Employing the concept of averaging, we calculate the

location hP of hydrostatic force as

hpF x ¼
Z H

0

hdF x: ð35Þ

Substituting the expressions for dFx and Fx from Eqs.

(33) and (34) respectively into Eq. (35) we get
hp ¼
2

3
H

nþ 2

nþ 3

� �
: ð36Þ

On passing to the limit n! 1 we obtain

lim
n!1

F xð Þ ¼ 1

2
qgwH 2 ð37Þ

and

lim
n!1

hp
� 	

¼ 2

3
H : ð38Þ

Thus Eqs. (37) and (38) are asymptotic to the usual

results when the index of the power law is very great.
3. Integral Fermat type flow

It is suggestive to become curious about the happen-

ings around us to learn the functioning mechanism of

nature. An example of such cadre is the hydraulic jump,

which often takes place in the study of river morphol-

ogy. It is a sudden discontinuity in the depth of the

flowing fluid. During the period of tide, a jump may

sometimes be observed by standing or moving up-

stream. This phenomenon of jump can easily be repro-

duced in laboratory scale. A plate held horizontally

under the faucet of fluid may be employed to demon-

strate a hydraulic jump. The moving fluid is allowed

to hit the center of the plate. Then the fluid flows radi-

ally outward in the form of fast thin layer and suddenly

increases in thickness before flowing over the edge of

the plate. We are interested in examining the relation-

ship between upstream and downstream thickness

responsible for the mechanism of elbow growth and

eddy formation in terms of relevant parameters to tes-

tify the validity of certain power laws and equipartition

principle.

Let us consider a control volume of width w with the

paper. Thus, the jump can be treated as stationary with

respect to the control volume. Assume the velocities V1

and V2 are uniform over the channel. By choosing the

control volume to be very thin, the frictional force on

the channel bed may be neglected. Let h1 and h2 be the

heights of the fluid stream before and after jump respec-

tively. For a bulk flow model, the density q may be con-

sidered constant for a small volumetric discharge Q

through the control volume. Applying continuity equa-

tion we have

qwh1V 1 ¼ qwh2V 2 ¼ Q: ð39Þ

Hydrostatic pressure forces over each face of control

volume can be accounted for momentum transfer across

the faces and thus we get

1

2
gh21 �

1

2
gh22 ¼ V 2

2h2 � V 2
1h1: ð40Þ
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From Eq. (39) we obtain

V 2 ¼
h1
h2

� �
V 1: ð41Þ

Invoking Eq. (41) into Eq. (40) we formulate a qua-

dratic equation in h1 and h2. Trivial solution of this

equation leads to

h1 ¼ h2: ð42Þ

Non-trivial solution is to be extracted from the fol-

lowing expression

h2
h1

� �2

þ h2
h1

� �
� 2

1

g

� �
V 2

1

h1

� �
¼ 0: ð43Þ

Invoking V 1 ¼ Q
qwh1

from Eq. (39) into Eq. (43) we get

h2
h1

¼ � 1

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ð Þ2 1

gq2

� �
Q2

w2h31

 !vuut : ð44Þ

For h2 � h1 � h (say), we will have to have

ð2Þ2 1

gq2

� �
Q2

w2h31

 !
� 0: ð45Þ

It implies that

h1 	 2ð Þ2=3 1

g

� �1=3 Q
qw

� �2=3

: ð46Þ

That means h1 has a minimum of the following order

h1;min � ð2Þ2=3 1

g

� �1=3 Q
qw

� �2=3

: ð47Þ

Thus, it can be concluded that for a fluid with definite

flow geometry, depth of flow h2 after jump scales with
2
3
power of the stream volume i.e.,

h2;min � Q2=3. ð48Þ

Next, it is interesting to recognize the results as h1 ap-

proaches h2; the jump becomes a small surface wave.

From the energy considerations and second law of ther-

modynamics we confirm the fact that V2 < V1 and

h2 > h1, as energy must be lost by friction through the

jump. This Cauchy–Poisson problem of small amplitude

wave has been studied theoretically by Rayleigh [21],

Kochin [22] and Sedov [23]. Reynolds [24] performed

an experimental investigation. Recently, Bejan [25]

showed that the general solution of such small-ampli-

tude wavelength in the longitudinal direction x scales

with a sinusoidal function of the form

hðxÞ � sin2 1

2
x

ffiffiffi
I
A

r !
; ð49Þ

where A is the cross-sectional area and I is the area mo-

ment of inertia of the stream.
As the height difference is not appreciable before and

after the jump, the energy is conserved. In view of Eq.

(49) flow energy is equipartitioned in the post-buckled

(degenerated) stream between upper half and lower half

of a sinusoid.

Now, we calculate the velocity of propagation of this

small-amplitude wave. From the Eq. (39) in view of neg-

ligible jump we obtain

V 1 � V 2 � V ðsayÞ: ð50Þ

Invoking Eq. (50) into Eq. (43) we obtain

V ¼
ffiffiffiffiffi
gh

p
: ð51Þ

Rearranging Eq. (51) into the form

V ¼ 1

2

� �1=2 ffiffiffiffiffiffiffiffi
2gh

p
ð52Þ

we see that velocity of flow for a negligible hydraulic

jump is a scale factor 1
2

� 	1=2
of the efflux from a narrow

opening at the bottom of the stream.

The maximum amplitude of the elbow is of the order

[26] of h
2
and this result is confirmed by all observations

of free jet flows. The post-buckled elbow region

becomes a distinct eddy. If the stream (h,V) was already

carrying small eddies, a large-scale turbulent structure

continues to move down stream with a speed [27] on

the order of V
2
. This is also an instance of equipartition

of velocity.
4. First geometrical construct in a shear flow

From the discussion of elemental Fermat type flow, it

is evident that a stable fluid column can exist in the form

of a vertical and or horizontal line segment in one-

dimensional arrangement. Thus most natural choice of

a fluid element in a two-dimensional static situation is

in the form of a finite rectangular block. In the flow sit-

uation the geometry assumes the shape of a parallelo-

gram. It can be guaranteed that the smallest angle h
(measured in radians and counter clockwise positive) be-

tween the two non-parallel sides of the configuration is

bounded in the domain 0 6 h 6
p
2
.

We consider an identified elemental area in the form

of a parallelogram ABCD as is in the Fig. 1(a). It is ex-

posed to fluid pressure due to its self-weight and the

force exerted by the adjacent layers in a flow situation.

Its sides AB and AD are x and y respectively.

We are interested to recognize the basic geometrical

shape of fluid element responsible for pressure and ki-

netic energy transport in a flow. We will also examine

the validity of the continuum principle at every point

of the flow.

Let, the thrust on the area ABCD be F(x,y), which is

a continuous function in space variable. We complete
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the parallelogram AB 0C 0D 0 with sides (x + dx) and

(y + dy). Area of the elementary parallelogram CC 0 is

dxdy sinh. Thrust on area CC 0 can be expressed as

F ðx; yÞjCC0 ¼ F ðxþ dx; y þ dyÞ � F ðxþ dx; yÞ
� F ðx; y þ dyÞ þ F ðx; yÞ: ð53Þ

Then, the pressure on CC 0, defined thrust per unit

area, appears as

pjCC0 ¼ 1

sinh

� lim
dx!0

Lt
dy!0

F ðxþdx;yþdyÞ�F ðxþdx;yÞ
dy � Lt

dy!0

F ðx;yþdyÞ�F ðx;yÞ
dy

dx

2
4

3
5:

ð54Þ

Performing the sum of limits, the expression for pres-

sure becomes

pjCC0 ¼ 1

sin h

� �
o2F
oxoy

: ð55Þ

If the limits were performed in a different order we

would obtain

pjCC0 ¼ 1

sin h

� �
o2F
oyox

: ð56Þ

Since, the thrust F(x,y) is continuous in space vari-

able, we have from Eqs. (55) and (56) the uniqueness

of pressure as
pjCC0 ¼ 1

sin h

� �
o2F
oxoy

¼ 1

sin h

� �
o2F
oyox

: ð57Þ

Thus, the pressure is continuous even at the corner

point, where it could be singular. Further, it is to be

noted that the load bearing capacity of the fluid element

is maximum when h ¼ p
2
and it is undefined for a hori-

zontal line element when h = 0. It is interesting to report

the fact that maximum shear transport occurs when

h ¼ p
4
, which is the mean value of the upper bound and

lower bound of the included angle.

Next, from the flow configuration employing trans-

formation geometry it can be conceived that rectangular

shape is altered by cutting a triangular slice from the left

hand side and translating it to the right hand side, for a

pressure transmission from left to right. For a finite size

system the elemental block could be considered compa-

rably small to conceptualize that the shear flow takes

place essentially in the form of tiny wedge packets.

For pure Couette type (velocity driven) flow the inter-

pretation is obvious. For Hagen–Poiseullie (pressure dri-

ven) flow, the situation can be thought of two super

imposed Couette flows with a moving boundary at the

mean line of the flow geometry. The idea expressed here

has an easy extension to the local potential model [28] to

the stability problems of laminar flow.
5. Conclusions

Understanding the physics of the problem can greatly

simplify the mathematical calculation process of ther-

modynamic optimization of systems. Post analysis of

the results obtained by virtue of constructal principle

exhibits the property of equipartition of entities between

two potentially competing forces. Thus the optimization

of a thermal system, in specific, is instructive as follows.

First, to choose all factors affecting system performance.

An orders of magnitude analysis is to be invited to elim-

inate the factors not of significant contributions. In most

situations two major competing forces result. They can

be equated to obtain the optimum value of the parame-

ter in concern. This design procedure is as rigorous as

the method of induction in any purely mathematical pre-

scription. The physical reality is to cast higher order

constructs from smaller one by what we implement as

method of induction.

Another characteristic feature of constructal theory is

to predict finite shape, which is featured in the applica-

tion of finite time thermodynamics. An argument from

the Euclidean geometrical frame is established to predict

geometric form for the first construct in a shear flow. The

findings that flow proceeds in the form of wedge packet is

at par with the stipulation of continuum mechanics and

also conforms the observation covered in other natural

flow process such as flow of radiation, information etc.
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