
Assistant Professor in the Department of Civil and Environmental Engineering
Johann Guilleminot joined Duke on July 1, 2017, as an assistant professor of civil and environmental engineering.
Prior to that, he was an assistant professor in the Multiscale Modeling and Simulation Laboratory at Université Paris-Est in France, and held a visiting assistant professor position in the Duke Department of Civil and Environmental Engineering.
He earned an MS (2005) and PhD (2008) in Theoretical Mechanics from the University of Lille 1 – Science and Technology (France), and received his Habilitation (2014) in Mechanics from Université Paris-Est. Habilitation is the highest academic degree in France.
Dr. Guilleminot’s research focuses on uncertainty quantification, computational mechanics and materials science, as well as on topics at the interface between these fields. He is particularly interested in the multiscale analysis of linear/nonlinear heterogeneous materials (including biological and engineered ones), homogenization theory, statistical inverse problems and stochastic modeling with applications for computational science and engineering.
Appointments and Affiliations
- Assistant Professor in the Department of Civil and Environmental Engineering
- Assistant Professor in the Department of Mechanical Engineering and Materials Science
Contact Information
- Office Location: 172 Hudson Hall, Box 90287, Durham, NC 27708
- Office Phone: (919) 684-3537
- Email Address: johann.guilleminot@duke.edu
- Websites:
Education
- M.S. Lille University of Science and Technology (France), 2005
- Ph.D. Lille University of Science and Technology (France), 2008
Research Interests
Computational mechanics, mechanics of heterogeneous materials, molecular dynamics simulations and atomistic-to-continuum coupling, stochastic solvers, statistical inverse problem and model validation, stochastic analysis, uncertainty quantification in science and engineeringCourses Taught
- CEE 394: Research Independent Study in Civil and Environmental Engineering
- CEE 421L: Matrix Structural Analysis
- CEE 530: Introduction to the Finite Element Method
- CEE 628: Uncertainty Quantification in Computational Science and Engineering
- CEE 690: Advanced Topics in Civil and Environmental Engineering
- CEE 702: Graduate Colloquium
- CEE 780: Internship
- EGR 393: Research Projects in Engineering
- ME 524: Introduction to the Finite Element Method
- ME 758S: Curricular Practical Training
- MENG 550: Master of Engineering Internship/Project
- MENG 551: Master of Engineering Internship/Project Assessment
Representative Publications
- Staber, B., and J. Guilleminot. “Stochastic modeling and generation of random fields of elasticity tensors: A unified information-theoretic approach.” Comptes Rendus Mecanique 345, no. 6 (June 1, 2017): 399–416. https://doi.org/10.1016/j.crme.2017.05.001.
- Staber, B., and J. Guilleminot. “Stochastic modeling of the Ogden class of stored energy functions for hyperelastic materials: the compressible case.” Zamm Zeitschrift Fur Angewandte Mathematik Und Mechanik 97, no. 3 (March 1, 2017): 273–95. https://doi.org/10.1002/zamm.201500255.
- Staber, B., and J. Guilleminot. “Functional approximation and projection of stored energy functions in computational homogenization of hyperelastic materials: A probabilistic perspective.” Computer Methods in Applied Mechanics and Engineering 313 (January 1, 2017): 1–27. https://doi.org/10.1016/j.cma.2016.09.019.
- Staber, B., and J. Guilleminot. “Stochastic hyperelastic constitutive laws and identification procedure for soft biological tissues with intrinsic variability.” Journal of the Mechanical Behavior of Biomedical Materials 65 (January 2017): 743–52. https://doi.org/10.1016/j.jmbbm.2016.09.022.
- Le, T. T., J. Guilleminot, and C. Soize. “Stochastic continuum modeling of random interphases from atomistic simulations. Application to a polymer nanocomposite.” Computer Methods in Applied Mechanics and Engineering 303 (May 1, 2016): 430–49. https://doi.org/10.1016/j.cma.2015.10.006.
- Guilleminot, J., and C. Soize. “Itô SDE-based generator for a class of non-Gaussian vector-valued random fields in uncertainty quantification.” Siam Journal on Scientific Computing 36, no. 6 (January 1, 2014): A2763–86. https://doi.org/10.1137/130948586.