MEMS Seminar: Assistant Professor Tim Mueller, John Hopkins University

Oct 15

Thursday, October 15, 2020 - 12:00pm to 1:00pm

https://duke.zoom.us/j/9088262425

Add to calendar »

Presenter

Assistant Professor Tim Mueller

Title: Accelerating Materials Research Through Machine Learning Location: Virtual Webex Address: https://duke.zoom.us/j/9088262425 Abstract: Machine learning has the potential to transform computational materials research by accelerating the calculation of material properties by orders of magnitude. I will present two examples of how this can be done at the atomic scale. In the first, I will demonstrate how machine learning, when combined with the cluster expansion approach, can be used to create highly accurate models of complex substitutional alloys. I will present several applications of this approach to problems in catalysis, including the prediction of the structures and properties of ternary alloy nanoparticles and the construction of novel catalytic activity maps of alloy phase diagrams. Such catalytic activity maps can be used to rapidly identify the synthesis conditions that are likely to produce highly stable and active catalysts, an important step towards rational catalysis design.

Contact

Cathy Tate
cathy.tate@duke.edu